Illustration par défaut

Cassini Grand Finale : a dive into the very heart of Saturn’s radio aurorae

Press release | Observatoire de Paris - PSL

Just one year after the end of the Cassini mission, the data harvested during the « Grand Finale » is starting to yield its first results. In a paper published in a special issue of the journal Science dated October 5th 2018, an international team led by an astronomer from the Observatoire de Paris-PSL at the Laboratoire d’études spatiales et d’instrumentation en astrophysique (Laboratory for space studies and astrophysical instrumentation) - LESIA (Paris Observatory / CNRS / PSL / Sorbonne University / Paris Diderot University) has identified and characterized in situ the regions on Saturn which are responsible for its auroral radio emission.

Représentation des orbites effectuées par la mission Cassini entre 2010 et 2017
Le « Grand finale » correspond à des orbites polaires courtes (en couleur). Dans cette étude, les auteurs ont étudié les 20 orbites dont le périkrone était situé juste au-delà de l’anneau F (en jaune, « F-ring ») ainsi que les 7 orbites d’approche (« pre F-ring ») qui les ont précédés.
© NASA/JPL-Caltech/Erick Sturm

Planets which have a magnetic field, like the Earth or the giant planets, generate luminous emission in the neighborhood of their magnetic poles : this emission is referred to as polar aurorae. They are the product of a flow of energetic particles, essentially electrons accelerated in the magnetosphere - the planetary magnetic environment – via various complex mechanisms, and subsequently channeled towards the planet along the high latitude magnetic lines of force. When they plunge into the atmosphere, these electrons generate radiation via collisions, a radiation which is observed in the optical domain (visible, ultra-violet or infra-red).

Above the atmosphere, as far out as several planetary radii, these same electrons also amplify radio waves. This radio emission is extremely intense. It is essential to studying this radiation in situ in in order to understand just how it is produced and how its study from a distance enhances our understanding of the magnetosphere. Moreover, a study of the magnetospheres of the planets in our solar system will lead to the establishment of a standard reference which will help us to interpret the radio emission of exo-planets, brown dwarves and stars, whose research is expanding rapidly [1].

During the « Grand Finale », the final stage of the Cassini mission, the space probe repeatedly flew over the magnetic poles at low altitude, just where Saturn’s auroral radio emission is born. By analyzing the in situ data acquired by the probe’s radio instrument [2] and magnetometer, the authors of the paper have identified the « sources » of the far radio aurorae out to about 3 planetary radii (180 000 km) above the atmosphere. They have thus been able to characterize the properties of the radio waves and whence they are born, and thereby compare successfully observation with theoretical prediction.

The result : Saturn’s auroral radio emission is produced by the same process as that which has been identified on the Earth and recently on Jupiter [3] – a plasma instability known as the Maser Cyclotron instability – which enables electrons, in this case having energies of several kilo-electron volts, to give up a part of their energy to radio waves as they gyrate around the magnetic lines of force.
Nevertheless, this mechanism functions under very different conditions than those known on the Earth. The regions responsible for the radio emission are very much farther out from the planet in the case of Saturn, and the electrons involved, measured locally, have had to have been accelerated towards the planet much farther out than the emission region, which somewhat shakes up our understanding of the acceleration mechanisms operating in the magnetosphere.

Furthermore, the radio sources were found on magnetic field lines connected in fact to specific regions where ultra-violet aurorae were observed at the same time by the Hubble space telescope in orbit around the Earth [4]. The authors have shown that this partial association of distant radio sources and ultra-violet aurorae could be explained by a very variable local plasma density, whose origin has still to be identified and which is sometimes too high for the instability to operate.

These results confirm that one and the same universal mechanism can produce auroral radio waves in the environments of very different magnetic bodies.

Figure 1
Tracé projeté, dans un plan méridien, des orbites de haute latitude du « Grand Finale » de Cassini. Les sources attendues du rayonnement radio auroral de Saturne (symboles colorés) sont localisées sur des lignes de champ magnétique de haute latitude (en gris). L’étude a porté sur les sources radio lointaines rencontrées lors des orbites « F-ring » et « pre F-ring ».
© L. Lamy, Observatoire de Paris – PSL
Figure 2
À gauche : Emissions radio aurorales de Saturne observées depuis la sonde Cassini au voisinage d’une traversée de source radio. La position des émissions radio a pu être retrouvée grâce à l’analyse gonio-polarimétrique de données acquises avec un instrument radio sophistiqué.
À droite : Aurores ultraviolettes observées simultanément par le télescope spatial Hubble. La flèche grise indique le pied magnétique de Cassini le long de sa trajectoire. L’intervalle correspondant à la source radio traversée (en orange) correspond à l’intérieur de l’ovale auroral.
© L. Lamy, Observatoire de Paris – PSL

Video

Paris Observatory’s Youtube animation station : Animated presentation of Saturn’s kilometric radiation observations

Reference

  • The research is published as a paper entitled “The low frequency source of Saturn’s Kilometric Radiation," by L. Lamy, et.al. in the October 5th 2018 issue of Science
  • The team includes four french researchers : Laurent Lamy (Observatoire de Paris – PSL), quatre chercheurs français : L. Lamy (astronome de l’Observatoire de Paris – PSL), P. Zarka (directeur de recherche CNRS), B. Cecconi (astronome de l’Observatoire de Paris – PSL), R. Prangé (directeur de recherche CNRS), and six others researchers : W. S. Kurth, G. Hospodarsky, A. Persoon, M. Morooka, J.-E. Wahlund, G. J. Hunt.